
 

 

 

 

 

 
 

 

EMPLOYEE PAYROLL SYSTEM 
 

 

Project Report 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
BY 

INSHA AFZAL 

December 16,2024 



Project Title: 

Employee Payroll System 

Problem Statement: 

The Employee Payroll System is designed to manage and process employee-related data, including 

salaries, leave records, employee information, and department details. The system must ensure 

accuracy in salary calculations, leave management, and data organization, all while maintaining 

data integrity and minimizing redundancy 

Note: 

For our project Employee Payroll System we have chosen 150 records of employees. 

Entities Chosen: 

The following entities were chosen to represent different aspects of the Employee Payroll System: 

Employee_new 

Payment 

Leave Records 

Salary Slip 

Department 

Employee 

• EMPLOYEE_ID (Primary Key) 

• EMAIL 

• NAME 

• ADDRESS 

• PHONE 

• DATE_OF_JOINING 
 

 

Payment 

• PAYMENT_ID (Primary Key) 

• MONTH 

• YEAR 

• TOTAL_PAY 



• BASIC_SALARY 

• EMPLOYEE_ID (Foreign Key referencing Employee 

Leave Records 

• LEAVE_ID (Primary Key) 

• EMPLOYEE_ID (Foreign Key referencing Employee) 

• LEAVE_TYPE 

• LEAVE_DAYS 

• LEAVE_DATE 

Salary Slip 

• SLIP_ID (Primary Key) 

• EMPLOYEE_ID (Foreign Key referencing Employee) 

• LEAVE_TYPE 

• LEAVE_DATE 

• LEAVE_DAYS 

Department 

• DEPARTMENT_ID (Primary Key) 

• DEPARTMENT_NAME 

• EMPLOYEE_ID (Foreign Key referencing Employee) 
 

 

Data Model: 

ER Model 

The (ER Model) defines the relationships between entities. These entities are connected by 

relationships such as Employee to Payment, Employee to Leave Records, and Employee to 

Department. 



For individual entity: 
 

 
 
 

 

 
 
 

 



Combined ER model: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cardnality: 

Here the relationship between entities is highlighted, 

❖ Employee_New to Payments (Direct One-to-Many Relationship) 

❖ Employee_New to Departments (One-to-One or One-to-Many Relationship) 

❖ Employee_New to Salary_Slip (Direct One-to-Many Relationship) 

❖ Employee_New to Leave_Records (Direct One-to-Many Relationship) 

❖ Indirect Relationship Between Leave_Records and Salary_Slip(using Employee_New) 



Graphically: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sequence Diagram: 
 

 
 

 



ii) Relational Model 

The Relational Model is used to define how the data is organized into tables and how these tables 

are related to each other via primary and foreign keys 

Relational model: 

Using SQL: 

Employee_New; 

 

Payments: 



 

Departments: 
 

Salary _slip: 
 

 

 
Leave_Records_: 
 

 

 

iii) Composite Model: In this project, we have applied the composite key approach where 

two or more columns together uniquely identify a record. This is particularly useful in cases where 

a single attribute is not sufficient to ensure uniqueness. For instance: 

• In the Payments table, the combination of Employee_ID and Month serves as a composite 

primary key to uniquely identify each payment record for an employee within a specific 

month. 



• Similarly, in the Leave_Records table, Employee_ID and Leave_Date form a composite key, 

ensuring each leave record is uniquely associated with an employee and a specific leave 

date. 

By using composite keys, we ensure data integrity and eliminate the need for additional surrogate 

keys, providing a more meaningful and efficient design for relationships between entities 

Payments Table: 

Purpose: To store payment details for employees. 

Composite Key: 

Employee_ID: Identifies the employee receiving the payment. 

Month: Represents the month the payment was issued. 

Composite Key Relationship: 

(Employee_ID + Month) ensures that each employee’s payment record for a specific month is 

unique. 
 
 
 

 

 

 
Leave_Records Table 

Purpose: To store employee leave details. 

Composite Key: 

Employee_ID: Identifies the employee taking the leave. 

Leave_Date: The date of the leave. 

Composite Key Relationship: 

(Employee_ID + Leave_Date) ensures each employee's leave record is unique for a specific date 



 

 
Normalized Schema: 

Employee_New table: we took all atomic values for our project for “Employee_New table” 
 

First Normal Form (1NF): 

The table is already in 1NF because all values are atomic and there are no repeating groups. 

Second Normal Form (2NF) 

The table is already in 2NF because there is no partial dependency, and all non-key attributes 

depend on the entire primary key (EMPLOYEE_ID) 

Third Normal Form (3NF) 

The table is in 3NF because we removed any potential transitive dependency by separating CITY 

and STATE into a new City table, and now CITY_ID is used in the Employee table. 

 

 
Final Conclusion for Your Project Regarding Normalization: 

In the same manner, the data in the Employee Payroll System has been cleaned and normalized 

through 1NF, 2NF, and 3NF. We ensured that all data is atomic, removed partial dependencies, 

and eliminated any transitive dependencies to create a well-organized, efficient table structure. 

This approach helped streamline the data for accurate and efficient payroll processing. 

 
 
 
 
 
 

 

SQL Commands: 

Tables Creation: 



 
 

 

In similier manner like above we created as well as inserted data in all tables for our project, here 

we have used automatic approach for inserting records for 150 employees , we can insert these 

manually. 

Testing: 

Run sql queries for testing : 



1. Simple Query to Check the Total Number of Employees (150 records): 
 

 

 
2. Check the Names of the First 5 Employees: 
 

3. Check the Salary Slip of the First 3 Employees 
 

 

 
4. Employee, Payments, and Salary_Slip for Employees 1 to 3 



 

5. Get Employees with Total Pay equal to 50138 

 

 

6. The query returns the total payment per month in ascending order of the month number. 



 
 

 
Manually we want to add new employee: 

Insert a new employee named "Insha" into all the relevant tables 
 

 

 

Result: 



7. To view only the name, phone number, and city (address) of the employee "Insha" from the 

Employee_New 
 

 

 

Triggers: 

DELETE trigger for the Leave_Records table. This trigger prevents any record from being deleted 

from the table by raising an error: 
 



Trigger for Validating Leave Days in Leave_Records: Prevents employees from taking more than 5 

leave days at a time. 
 

Output: 
 

 

 

Size Estimation of 

▪ Record 

▪ Table 

▪ DB 
 

 

Employee_New Table: 

EMPLOYEE_ID: NUMBER(38) = 38 bytes 

EMAIL: VARCHAR2(100) = 100 bytes 

NAME: VARCHAR2(100) = 100 bytes 

ADDRESS: VARCHAR2(255) = 255 bytes 

PHONE: VARCHAR2(15) = 15 bytes 

DATE_OF_JOINING: DATE = 7 bytes 

 
Total size for one record in Employee_New =38 + 100 + 100 + 255 + 15 + 7 = 515 bytes 



Payments Table: 

PAYMENT_ID: NUMBER(38) = 38 bytes 

MONTH: VARCHAR2(15) = 15 bytes 

YEAR: NUMBER(38) = 38 bytes 

TOTAL_PAY: NUMBER(10,2) = 10 bytes 

BASIC_SALARY: NUMBER(10,2) = 10 bytes 

EMPLOYEE_ID: NUMBER(38) = 38 bytes 

 
Total size for one record in Payments =38 + 15 + 38 + 10 + 10 + 38 = 14G bytes 
 

 

Leave_Records Table: 

LEAVE_ID: NUMBER(38) = 38 bytes 

EMPLOYEE_ID: NUMBER(38) = 38 bytes 

LEAVE_TYPE: VARCHAR2(50) = 50 bytes 

LEAVE_DAYS: NUMBER(38) = 38 bytes 

LEAVE_DATE: DATE = 7 bytes 

 
Total size for one record in Leave_Records=38 + 38 + 50 + 38 + 7 = 171 bytes 
 

 

Salary_Slip Table: 

SLIP_ID: NUMBER(38) = 38 bytes 

EMPLOYEE_ID: NUMBER(38) = 38 bytes 

LEAVE_TYPE: VARCHAR2(50) = 50 bytes 

LEAVE_DATE: DATE = 7 bytes 

LEAVE_DAYS: NUMBER(38) = 38 bytes 

 
Total size for one record in Salary_Slip=38 + 38 + 50 + 7 + 38 = 171 bytes 



Departments Table: 

DEPARTMENT_ID: NUMBER(38) = 38 bytes 

DEPARTMENT_NAME: VARCHAR2(100) = 100 bytes 

EMPLOYEE_ID: NUMBER(38) = 38 bytes 

 
Total size for one record in Departments =38 + 100 + 38 = 176 bytes 
 

 

Estimate Total Size of Tables 

Payments (150 records): 

149 bytes × 150 = 22,350 bytes = 22.35 KB 

Employee_New (150 records): 

515 bytes × 150 = 77,250 bytes = 77.25 KB 

Leave_Records (150 records): 

171 bytes × 150 = 25,650 bytes = 25.65 KB 

Salary_Slip (150 records): 

171 bytes × 150 = 25,650 bytes = 25.65 KB 

Departments (150 records): 

176 bytes × 150 = 26,400 bytes = 26.4 KB 
 

 

Total Database Size: 

Total size of database = Payments size + Employee_New size + Leave_Records size + Salary_Slip 

size + Departments size 

= 22.35 KB + 77.25 KB + 25.65 KB + 25.65 KB + 26.4 KB 

= 177.3 KB 



Final Summary: 

In this project, we developed an Employee Payroll System to manage employee-related data, such 

as payments, leave records, and department details. The database was designed using an Entity- 

Relationship Model and translated into a Relational Modelfor better data management. We 

ensured the data was organized and efficient by normalizing the schema through 1NF, 2NF, and 

3NF, eliminating redundancy and ensuring data integrity. SQL commands were used to create the 

database, insert sample data, and implement comprehensive queries and triggers for functionality. 

Finally, size estimations were performed for each table and record to understand the database's 

storage requirements. This approach guarantees a well-structured, optimized, and scalable 

system for managing employee payroll efficiently. 

 
 

 


