EMPLOYEE PAYROLL SYSTEM

Project Report

BY

INSHA AFZAL
December 16,2024

Project Title:

Employee Payroll System

Problem Statement:

The Employee Payroll System is designed to manage and process employee-related data, including
salaries, leave records, employee information, and department details. The system must ensure
accuracy in salary calculations, leave management, and data organization, all while maintaining
data integrity and minimizing redundancy

Note:

For our project Employee Payroll System we have chosen 150 records of employees.

Entities Chosen:

The following entities were chosen to represent different aspects of the Employee Payroll System:
Employee_new

Payment

Leave Records

Salary Slip

Department

Employee

e EMPLOYEE_ID (Primary Key)

e EMAIL

e NAME

o ADDRESS
e PHONE

o DATE_OF_JOINING

Payment
e PAYMENT_ID (Primary Key)
e MONTH
e YEAR
e TOTAL_PAY

e BASIC_SALARY
o EMPLOYEE_ID (Foreign Key referencing Employee
Leave Records

e LEAVE_ID (Primary Key)

EMPLOYEE_ID (Foreign Key referencing Employee)

LEAVE_TYPE
LEAVE_DAYS

LEAVE_DATE

Salary Slip
e SLIP_ID (Primary Key)
o EMPLOYEE_ID (Foreign Key referencing Employee)
e LEAVE_TYPE
e LEAVE_DATE
e LEAVE_DAYS
Department
e DEPARTMENT_ID (Primary Key)
e DEPARTMENT_NAME

o EMPLOYEE_ID (Foreign Key referencing Employee)

Data Model:
ER Model

The (ER Model) defines the relationships between entities. These entities are connected by
relationships such as Employee to Payment, Employee to Leave Records, and Employee to

Department.

For individual entity:

Employee_ID & int |
Email varchar
Name varchar
Address varchar
Phone varchar
Date_Of_Joining date

Leave ID & int
Employee_ID int
Leave Type varchar
Leave Days int
Leave Date ate

Payment_ID & int
Month int
Year int
Total Pay int
Basic_Salary int
§ Employee ID int

salary slip

Slip_ID & int
Employee_ID int
Leave_Type varchar
Leave Date date
Leave Days int

Departments

Department ID 2
Department_Name

é Employee ID

varcnar

int

int

Combined ER model:

Employee_New Payments Departments Salary Slip

Employee ID /2 int —~—— Payment_ID 2 int Department_ID int Slip_ID 2 int
Email varcha Month Nt Department_Name varcha < Employee ID

Name archa Year nt < Employee ID it Leave_Type

Address varcha Total_Pay nt Leave Date

Phone varcha Basic_Salary it Leave Days

Date_Of Joining date ~< Employee_ID

Leave ID £ int
Employee_ID

Leave_Type

Leave_Days

Leave_Date

Cardnality:

Here the relationship between entities is highlighted,

X3

8

Employee_New to Payments (Direct One-to-Many Relationship)

Employee_New to Departments (One-to-One or One-to-Many Relationship)
Employee_New to Salary_Slip (Direct One-to-Many Relationship)

Employee_New to Leave_Records (Direct One-to-Many Relationship)

Indirect Relationship Between Leave_Records and Salary_Slip(using Employee_New)

X3

A

X3

A

X3

8

X3

A

Graphically:

Salary Slip

Employee_ID 2 — Payment _ID £ int Department ID & Slip_ID £

Email archar Month nt Department_Name varchar —L Employee_ID

Name archa Year t —:3 Employee_ID nt Leave_Type

Address Total_Pay nt Leave Date date

Phone Basic_Salary Leave_Days
< Employee_ID n

Date_Of Joining

Leave ID £ int

*
Employee_ID t >
Leave Type varchar

Leave_Days

Leave Date

Sequence Diagram:

L'l;e\r' Login Page Database Admin Dashboard | | Department Dashboard
: Enters username/password !
H Verify credentials
| (SELECT Role FROM UserCredentials)

alt / [Credentials valid]
) - Returns role
I <

Store username in session

alt / [Admin role]
! Redirect
i Load departments
h (SELECT Department_ Name FROM Departments)
h Department list -
| Show admin dashboard

[Department role]
I Redirect based on role
| Load department-specific data
i rtmen
! CDepartment data -
| Show department dashboard

[invalid credentiais]

i N i
) Nomatehfound |
| _ Show error message

U?-ﬁr | Lagin Page | Database | Admin Dashboard | | Department Dashboard

ii) Relational Model

The Relational Model is used to define how the data is organized into tables and how these tables
are related to each other via primary and foreign keys

Relational model:
Using SQL.:

Employee_New;

SQL> describe employee new;

MNull?

EMPLOYEE_ID

EMATL

MNAME

ADDRESS

PHOME

DATE_OF_JOINING \ \ DATE

Payments:

PAYMENT_ID
MONTH

YEAR
TOTAL_PAY
BASIC SALARY
EMPLOYEE_TID

Departments:
Name
DEPARTMENT _ID

DEPARTMENT _MNAME
EMPLOYEE_ID

Salary _slip:

SLIP_ID
EMPLOYEE_ID
LEAVE_TYPE
LEAVE_DATE
LEAVE_DAYS

Leave_Records_:

LEAVE_ID
MPLOYEE_ID

LEAVE_TYPE
LEAVE_DAYS
LEAVE_DATE

NUMEER
VARC

NUMBER
NUMEER
NUMEER
NUMEER

NUMBER(38)
NUMBER(38)
NULL VARCHAR2(5@)
NULL DATE
NULL NUMBER(38)

NULL NUMBER(38)
NULL NUMBER(38)
NULL VARCHAR2(50)
NULL NUMBER(38)
NULL DATE

iii) Composite Model: In this project, we have applied the composite key approach where

two or more columns together uniquely identify a record. This is particularly useful in cases where
a single attribute is not sufficient to ensure uniqueness. For instance:

e Inthe Payments table, the combination of Employee_ID and Month serves as a composite
primary key to uniquely identify each payment record for an employee within a specific

month.

o Similarly, in the Leave_Records table, Employee_ID and Leave_Date form a composite key,
ensuring each leave record is uniquely associated with an employee and a specific leave
date.

By using composite keys, we ensure data integrity and eliminate the need for additional surrogate
keys, providing a more meaningful and efficient design for relationships between entities

Payments Table:

Purpose: To store payment details for employees.

Composite Key:

Employee_ID: Identifies the employee receiving the payment.
Month: Represents the month the payment was issued.
Composite Key Relationship:

(Employee_ID + Month) ensures that each employee’s payment record for a specific month is
unique.

Employee ID Month Payment_Amount

101 January 2024 50,000

101 February 2024 50,000

Leave_Records Table

Purpose: To store employee leave details.

Composite Key:

Employee_ID: Identifies the employee taking the leave.
Leave_Date: The date of the leave.

Composite Key Relationship:

(Employee_ID + Leave_Date) ensures each employee's leave record is unique for a specific date

Employee_ID Leave_Date Reason

2024-03-15 Sick Leave

2024-03-16 Personal Leave

Normalized Schema:

Employee_New table: we took all atomic values for our project for “Employee_New table”

EMPLOYEE_ID EMAIL NAME ADDRESS PHONE DATE_OF_JOINING

101 m John Doe 123 Main St 123-456-7890 2021-05-01

102 JEL mple.com Jane Smith 456 Oak St 987-654-3210 2020-08-15

First Normal Form (1NF):
The table is already in 1NF because all values are atomic and there are no repeating groups.
Second Normal Form (2NF)

The table is already in 2NF because there is no partial dependency, and all non-key attributes
depend on the entire primary key (EMPLOYEE_ID)

Third Normal Form (3NF)

The table is in 3NF because we removed any potential transitive dependency by separating CITY
and STATE into a new City table, and now CITY_ID is used in the Employee table.

Final Conclusion for Your Project Regarding Normalization:

In the same manner, the data in the Employee Payroll System has been cleaned and normalized
through 1NF, 2NF, and 3NF. We ensured that all data is atomic, removed partial dependencies,
and eliminated any transitive dependencies to create a well-organized, efficient table structure.
This approach helped streamline the data for accurate and efficient payroll processing.

SQL Commands:

Tables Creation:

> BEGIN
-- Optional: Delete ex g records if the table needs to be reset
DELETE FROM Employee_New;
COMMIT;

-- Insert loop for 158 records

FOR i IN 1..158 LOOP
NTO Employee_New (Employee_ID, Email, Name, Address, Phone, Date_Of_Joining)

-- Phone
M-DD°) + MOD(-- Date_0Of_Joining

.PUT_LINE @ records inserted suc into Employee_MNew.

BEGIN
FOR i IN 1..158 LOOP
INSERT INTO Fayments (Payment_ID, Month, Year, Total Pay, Ba Salary, Employee_
VALUES (

4
5
4]

o |

COMMIT;
14 DBMS_OUTPUT.PUT_LINE(158 records inserted s y = NE
15 END;
16 f

PL/SQL procedure successfully completed.

BEGIN
FOR i IN 1..158 LOOP
INSERT INTO Departments (Department_ID, Department_Name, Employee ID)
VALUES (
i, -- Department_ID
‘Department ° MOD(i, 5) 1, -- Department Name (5 departments)
i -- Employee_ID (foreign key from Employee_New)

oo s

END LOOP;
COMMIT;
DBMS_OUTPUT.PUT_LINE(158 records inserted successfully into Departments.');

In similier manner like above we created as well as inserted data in all tables for our project, here
we have used automatic approach for inserting records for 150 employees , we can insert these
manually.

Testing:

Run sql queries for testing :

1. Simple Query to Check the Total Number of Employees (150 records):

5QL> SELECT COUNT(*)
2 FROM Employee New;

COUNT(*)

» SELECT Name
FROM Employee MNew
WHERE ROWNUM <= 5;

Employee
Employee
Employee
Employee
Employee

WP Ll b e

3. Check the Salary Slip of the First 3 Employees

> SELECT Payment_ID, Employee ID, Total Pay, Basic_Salary
FROM Payments
WHERE Employee ID <= 3;

PAYMENT_ID EMPLOYEE_ID TOTAL_PAY BASIC SALARY

4. Employee, Payments, and Salary_Slip for Employees 1 to 3

» SELECT e.Mame, p.Total Pay, s.lLeave Type, s.lLeave Days
FROM Employee New e

JOIN Payments p ON e.Employee ID = p.Employee ID

JOIN Salary_Slip s ON e.Employee ID = s.Employee ID
WHERE e.Employee ID BETWEEN 1 AND 3;

Q

L>
%)
4

Employee 1
Seeel Casual

Employee 2
cepe2 Sick

Employee 3
5eEe3 Casual

5. Get Employees with Total Pay equal to 50138

> SELECT e.Name, SUM{p.Total_Pay) AS Total Pay
FROM Employee New e
JOIMN Payments p ON e.Employee ID = p.Employee ID
GROUP e.Name
HAVING SUM(p.Total_P:

2

VB wWN e

Employee
5e:

6. The query returns the total payment per month in ascending order of the month number.

SELECT p.Month, SUM{p.Total Pay’ al Pay Month
FROM Payments p

GROUP BY p.Month

ORDER BY TO NUMBER(p.Month

MONTH TOTAL PAY MONTH

6868960
68691

TOTAL PAY MONTH
6868924

12 rows selected.

Manually we want to add new employee:

Insert a new employee named “Insha” into all the relevant tables

Employee_ID, E » Name, Phone, Date_ £
', 'Insha’, ' p 1', TO DATE s "YYYY-MM-DD'

row created.

> INSERT INTO Pa n /men F , B Salary, Employee_ID)
/ALUES (151, ' 3

row created.

> INSERT INTO Departments - ,» Employee_ID)
'ALUES 1, ° artmen

row created.

Result:

7. To view only the name, phone number, and city (address) of the employee "Insha” from the
Employee_New

» SELECT Mame, Phone, Addre
FROM Employee_ MNew
WHERE Mame = "Insha’;

53885678981
Khanpur

Triggers:

DELETE trigger for the Leave_Records table. This trigger prevents any record from being deleted
from the table by raising an error:

[¥3]
=]
=

> CREATE OR REPLACE TRIGGER trg_prevent_delete
BEFORE DELETE ON Leave Record
FOR EACH ROW
BEGIN
RAISE_APPLICATION_ERROR(-20082, 'Deletion of leave records is not allowed.');
END;

s L R

oh

=

SQL> DELETE FROM Leave Records WHERE Leave ID = 151;
DELETE FROM Leave_ Records WHERE Leave ID = 151

ERROR at line 1:
ORA-20002: Deletion of leave records is not allowed.

Trigger for Validating Leave Days in Leave_Records: Prevents employees from taking more than 5
leave days at a time.

» CREATE OR REPLACE TRIGGER trg_wvalidate leave days
BEFORE INSERT OR UPDATE ON Leave Records
FOR EACH ROW
BEGIN
IF :MEW.Leave Days > 5 THEN
RAISE APPLICATION ERROR({-288081, 'Leave days cannot exceed 5.");
END IF;
END;

5Q

L
2
4
i

0

Trigger created.

Output:

{Leave_ID, Employee ID, Leave Type, Leave Days, Leave_Date)
2 VALUES - : 6, TO_DATE('2624-86-81", ;

INSERT INTO v e ID, Employee ID, Leave Type, Leave Days, Leave Date)

Size Estimation of

= Record

= Table

= DB
Employee_New Table:

EMPLOYEE_ID: NUMBER(38) = 38 bytes
EMAIL: VARCHAR2(100) = 100 bytes
NAME: VARCHAR2(100) = 100 bytes
ADDRESS: VARCHAR2(255) = 255 bytes
PHONE: VARCHAR2(15) = 15 bytes
DATE_OF_JOINING: DATE = 7 bytes

Total size for one record in Employee_New =38 + 100 + 100 + 255 + 15 + 7 = 515 bytes

Payments Table:

PAYMENT_ID: NUMBER(38) = 38 bytes
MONTH: VARCHAR2(15) = 15 bytes
YEAR: NUMBER(38) = 38 bytes
TOTAL_PAY: NUMBER(10,2) = 10 bytes
BASIC_SALARY: NUMBER(10,2) = 10 bytes
EMPLOYEE_ID: NUMBER(38) = 38 bytes

Total size for one record in Payments =38 + 15 + 38 + 10 + 10 + 38 = 14G bytes

Leave_Records Table:
LEAVE_ID: NUMBER(38) = 38 bytes
EMPLOYEE_ID: NUMBER(38) = 38 bytes
LEAVE_TYPE: VARCHAR2(50) = 50 bytes
LEAVE_DAYS: NUMBER(38) = 38 bytes
LEAVE_DATE: DATE = 7 bytes

Total size for one record in Leave_Records=38 + 38 + 50 + 38 + 7 = 171 bytes

Salary_Slip Table:

SLIP_ID: NUMBER(38) = 38 bytes
EMPLOYEE_ID: NUMBER(38) = 38 bytes
LEAVE_TYPE: VARCHAR2(50) = 50 bytes
LEAVE_DATE: DATE = 7 bytes
LEAVE_DAYS: NUMBER(38) = 38 bytes

Total size for one record in Salary_Slip=38 + 38 + 50 + 7 + 38 = 171 bytes

Departments Table:

DEPARTMENT_ID: NUMBER(38) = 38 bytes
DEPARTMENT_NAME: VARCHAR2(100) = 100 bytes
EMPLOYEE_ID: NUMBER(38) = 38 bytes

Total size for one record in Departments =38 + 100 + 38 = 176 bytes

Estimate Total Size of Tables

Payments (150 records):

149 bytes x 150 = 22,350 bytes = 22.35 KB
Employee_New (150 records):

515 bytes x 150 = 77,250 bytes = 77.25 KB
Leave_Records (150 records):

171 bytes x 150 = 25,650 bytes = 25.65 KB
Salary_Slip (150 records):

171 bytes x 150 = 25,650 bytes = 25.65 KB
Departments (150 records):

176 bytes x 150 = 26,400 bytes = 26.4 KB

Total Database Size:

Total size of database = Payments size + Employee_New size + Leave_Records size + Salary_Slip
size + Departments size

=22.35KB +77.25KB +25.65 KB + 25.65 KB + 26.4 KB
=177.3KB

Final Summary:

In this project, we developed an Employee Payroll System to manage employee-related data, such
as payments, leave records, and department details. The database was designed using an Entity-
Relationship Model and translated into a Relational Modelfor better data management. We
ensured the data was organized and efficient by normalizing the schema through 1NF, 2NF, and
3NF, eliminating redundancy and ensuring data integrity. SQL commands were used to create the
database, insert sample data, and implement comprehensive queries and triggers for functionality.
Finally, size estimations were performed for each table and record to understand the database’s
storage requirements. This approach guarantees a well-structured, optimized, and scalable
system for managing employee payroll efficiently.

